3 research outputs found

    An effect size statistical framework for investigating sexual dimorphism in non-avian dinosaurs and other extinct taxa

    Get PDF
    Despite reports of sexual dimorphism in extinct taxa, such claims in non-avian dinosaurs have been underrepresented recently (~the last decade) and often criticized. Since dimorphism is widespread in sexually reproducing organisms today, underrepresentation might suggest either methodological shortcomings or that this diverse group exhibited highly unusual reproductive biology. Univariate significance testing, especially for bimodality, is ineffective and prone to false negatives. Species recognition and mutual sexual selection hypotheses, therefore, may not be required to explain supposed absence of sexual dimorphism across the grade, likely a type II error. Instead, multiple lines of evidence support sexual selection and variation of structures consistent with secondary sexual characteristics, strongly suggesting sexual dimorphism in non-avian dinosaurs. We propose a framework for studying sexual dimorphism in fossils, focusing on likely secondarily sexual traits and testing against all alternate hypotheses for variation in them using multiple lines of evidence. We use effect size statistics appropriate for low sample sizes, rather than significance testing, to analyze potential divergence of growth curves in traits and constrain estimates for dimorphism magnitude. In many cases, estimates of sexual variation can be reasonably accurate, and further developments in methods to improve sex assignments and account for intrasexual variation (e.g., mixture modelling) will improve accuracy. It is better to compare estimates for the magnitude of and support for dimorphism between datasets than to dichotomously reject or fail to reject monomorphism in a single species, enabling the study of sexual selection across phylogenies and time. We defend our approach with simulated and empirical data, including dinosaur data, showing that even simple approaches can yield fairly accurate estimates of sexual variation in many cases, allowing for comparison of species with high and low support for sexual variation.Funding provided by: National Science FoundationCrossref Funder Registry ID: http://dx.doi.org/10.13039/100000001Award Number: PLR 1341645 and FRES 192588

    Spinning up a Daze: TESS Uncovers a Hot Jupiter orbiting the Rapid-Rotator TOI-778

    Get PDF
    NASA's Transiting Exoplanet Survey Satellite (TESS) mission, has been uncovering a growing number of exoplanets orbiting nearby, bright stars. Most exoplanets that have been discovered by TESS orbit narrow-line, slow-rotating stars, facilitating the confirmation and mass determination of these worlds. We present the discovery of a hot Jupiter orbiting a rapidly rotating (vsin(i)=35.1±1.0km/s) early F3V-dwarf, HD115447 (TOI-778). The transit signal taken from Sectors 10 and 37 of TESS's initial detection of the exoplanet is combined with follow-up ground-based photometry and velocity measurements taken from Minerva-Australis, TRES, CORALIE and CHIRON to confirm and characterise TOI-778b. A joint analysis of the light curves and the radial velocity measurements yield a mass, radius, and orbital period for TOI-778b of 2.76+0.24−0.23Mjup, 1.370±0.043Rjup and ∼4.63 days, respectively. The planet orbits a bright (V=9.1mag) F3-dwarf with M=1.40±0.05Msun, R=1.70±0.05Rsun, and logg=4.05±0.17. We observed a spectroscopic transit of TOI-778b, which allowed us to derive a sky-projected spin-orbit angle of 18∘±11∘, consistent with an aligned planetary system. This discovery demonstrates the capability of smaller aperture telescopes such as Minerva-Australis to detect the radial velocity signals produced by planets orbiting broad-line, rapidly rotating stars
    corecore